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Abstract 

Coding capacity is obtained for the discrete-time additive Gaussian channel, 

and upper bounds on capacity are obtained for a class of nonGaussian channels. 

The results apply to channels with or without memory, stationary or 

nonstationary. An assumption is required in order to obtain these results; 

this assumption is appropriate for channels without memory using an average 

energy constraint and for a large class of channels with memory. 



Introduction 

Coding capacity for block coding of the discrete-time additive Gaussian 

channel is one of the oldest problems in the Shannon theory. Nevertheless, the 

solution has been obtained only for the simplest case: when the channel is 

memoryless, with constant noise covariance and with a simple energy constraint 

on the code words. 

This paper gives a solution for the deterministic coding capacity of this 

channel. The results hold for channels with or without memory, stationary or 

nonstationary, and provide upper bounds for the capacity of a class of 

nonGaussian channels. They are obtained under an assumption on the relation 

existing between the noise covariance and the constraint covariance; it will 

be seen that this assumption is quite appropriate for memoryless channels with 

an average energy constraint and that it will hold for a large class of 

channels with memory. 

The channel is described as follows. The noise is a zero-mean stochastic 

process {N^. t = 1.2....} defined on a probability space (Q.p.?)  and having 

paths (w.p. 1) in £^  (the space of square-summable real sequences), fx^ is a 

probability (perhaps not countably additive) on the cylinder sets of S 

defined by ^^{x: (x. , . . ,x. ) € A} = P{(o: (N. (u). . . . . N (o))) € A}, defined 
In In 

for any n > 1, any Borel set A in K", and any set of integers i ,..,i . (N ) 
1'  ' n   t 

is additive noise. }j^  determines a bounded, strictly-positive, self-adjoint 

covariance operator Rj^ in ^^^ ^n infinite matrix with R (i.j) = EN.N.. A 

constraint on the transmitted signal will be given in terms of a second such 

covariance operator R^ in i^.   A basic assumption is that range(R^) contains 

range(R^). This is necessary in order that the information capacity be finite 

[1] and finite information capacity is necessary in order to obtain the coding 

A. 
j2^ 
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capacity. Under this assumption, there exists a self-adjoint operator S such 

that Rj^ = RJ(I+S)RJ, where (I+S)  exists and is bounded (see [1. Prop. 1] for 

ramifications of this fact). The limit points of the spectrum of S will play a 

key role in this paper. These limit points consist of all eigenvalues of 

infinite multiplicity, all limits of sequences of distinct eigenvalues, and 

all points of the continuous spectrum [2, p. 363]. 

A simple example of such a channel and constraint is the memoryless 

Gaussian channel with R^ = I (leading to an average power constraint) and R 

given by Rj^(i, j) = a^S.^. with a j > e for all j > 1. some e > 0. A more 

complicated channel is considered in the example given at the end of the 

paper. 

In the discrete-time channel, a code {k,n,e} is a set of k code words 

x^,...Xj^ and corresponding decoding sets C^ C^^, satisfying the constraints 

given below, with the requirement that each x. belong to K^. The decoding sets 

are Borel sets in IR . The constraints on the code words are that llx 11^  < nP 
i W.n - 

2      -^2 
where Hxll^^^ = "R^^^'^llj^: H-H^^ is the n-dimensional Euclidean norm, and R^  is 

the restriction of R^ to {1.2...,n}x{1.2,...n}. We require that 

Pj^iy-  y+Xj € C^} > 1 - e, where p^  is the measure on the Borel sets of K" 

induced from u^  by the map q^: x ^ (''r^2 ''n^" ^ ^ 0 is an admissible rate 

n.R 
if there exists a sequence of codes ({[e ^ ],n..£ }) with e  -* 0 as n. -» «>. 

i i 
CO 

The capacity C^(P) is the supremum over the set of admissible rates. 

We will obtain an exact expression for the coding capacity of the 

discrete-time Gaussian channel and an upper bound for a class of non-Gaussian 

chEuinels. 

The coding capacity involves the entropy Hgj^(N), where ^      is the 

Gaussian noise measure (perhaps not countably additive) having covariance 
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matrix Rj^. In this framework, the definition is H (N) = sup Hp-j(N). where 

n 

Hgj^(N) is the entropy of (jjj with respect to p^:  Hgj^(N) = / 
J  n 
% 
n 
'GN 

n 

n Of course, Hj^j^(N) = «> if jj^ is not absolutely continuous with respect to JLIJ, 

Bounds on the coding capacity of the discrete-time Gaussian channel have 

been obtained. It should be noted that these bounds hold without any further 

assumptions. 

Proposition [3]: Suppose that N is Gaussian. Let 0 be the smallest and e„ the 
■•^ K 

largest limit point of the spectrum of the operator S. Then 

t log 1 + 
1+e 

'K 
< VP) log 

Hgj^(N) < 00. then cJJ(P) < t log 

1 + 

1 + 

1+e, 

p 
1+0 

l-" 

If N is not Gaussian, and 

We now turn attention to obtaining the exact capacity. The basic path to 

be followed will be familiar to information theorists, as Feinstein's Lemma 

and Fano's inequality are applied to prove the lower bound and the upper 

bound, respectively, on capacity. However, the development relies heavily on 

recent results on information capacity (especially those of [1]) and on 

spectral theory for unbounded self-adjoint operators in Hilbert space (as 

developed in [2]). 

In order to state and prove the coding theorem, we will need two lemmas 

and a number of definitions. 

LemmaJ,: Let S: e^  -> S^  satisfy Rj^ = R|(I+S)R|. and let S^: K"" ^ IR"" satisfy 

^N.n ^ ^.n^^n'^^n^S.n' ^°^ ^ ^  !• where I^ is the identity in K^. Then: 

(^) ^,n = PnVn 

^,n-PnVn 
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^^^ ^W.n ^ ^nS\' ^^®^^ ^n' ^2 "* "^'^ is a partial isometry with initial set 

-1- M 
equal to range(R^P^) and final set ^ 

(^) \ = V<- n> 1. 

(4) Fix 6 > 0. Let Gj^ be the largest limit point of the spectrum of S. Let 

M^ = dim{x € ^■.   11(1 +S )2xll^ < (l+e„+6)llxl|2}. Then M^ ^ «, and M^/n -*  1 
*' 11 II   n      1^     n        n n 

as n ^ 00, for every 5 > 0. 

(5) Let 5 be strictly positive and strictly less than 1+ 0  where 0 is the 

smallest limit point of the spectrum of S. Let M^(0) be the dimension of 

the set {x in ^■.   K'^^^^^^\^  < 5}. Then there exists an integer K^ such 

that M^(0) < Kg for all n > 1. and so M^(0)/n ^ 0 as n -^ ». 

Proof: (1) Clear. 

(2) follows from (1) and [4]. ^, 

(3) Equate the two definitions of R^  : 

^.n = 4.n( VSn)4,n ^^ '     (a) 

Since VX = I on range(R|p;;). ^fl^V^^ =  V^R|P\. SO that vf^ = 1^  on K^ 

Since IR = range(R^ ), equating (a) and (b) yields S = V SV**. 

To prove (4), we can assume that 0j. < <». it is then sufficient to show 

that there exists, for any 6 > 0, K^ < <» such that the dimension of 

span{x € IR":   l'(In"*'Sn)^''"n >  (1+6^+5) 11x11 J}  does not exceed K^. 
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Note first that since V is a partial isometry with initial set equal to 

range(R|P^), there exists for any x in K^ a unique y(x) in «„ such that 

x = V y. Since V V = I on the initial set of V , we have that 
11 n 11 XI 

dim{x € IR"^: ||(I +S )^X\\^  > (l+e„+6) 11x11^} 
n n-^  n  ^  K '  n' 

= dim{x € range(R|pJJ): ll(I+S)^xll^ > (l+ej^+5) 11x11^}. 

Thus, to show that M -» <». it is sufficient to show that there exists K^ such 

that dim{x € e^i   ll(I+S)2xll^ > (l+Gj^+S) 11x11^} does not exceed K 

Let {?^,   A € IR} be the left-continuous resolution of the identity for the 

operator I+S, such that the domain 2)(I+S) of I + S consists of all elements x 

in ^2 such  that jQAdllPj^xll^ < oo,   with (I+S)x = JQAdP^^x.  Here  the  integral 

exists as a limit of Stieltjes-type sums in the strong operator topology 

(pointwise convergence); see [2]. Since 9^^ < oo, S is bounded with 
o 

<(I+S)x,x> < Mlixll  for all x € i^.   some M < ". Suppose that <Sx,x> > 9 11x11^ 

for some x in ^„. For any e > 0, 

1+9+6      1+M+e 
I + S = S      AdP, + S      XdP^. 

0     ^  1+9^+5  ^ 

Now, as 1 + 9j^ is the largest limit point of I + S, the operator 

^l+M+£ ~ ^1+9 +5 °^^ °^^^ have  finite-dimensional range space. If the set 
K 

{x € e^:   ll(I+S)2xll    >  (l+9j^+5) 11x11^} has Infinite dimension,   then there must 

exist an element f such that <(I+S)f,f> > (l+9,.+6)llf 11^ and 
K 

"(VM+S - W+6)f" = 0- K 
l+M+e 1+9+5 

Since        (I+S)f =  X ?^dP f,   this gives  (I+S)f = S      XdP^ f 
0    '^ 0     ^ 
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< (i+e„+6) X d<p,f.f> 
K    Q    A 

or <(I+S)f,f> < (l+ej^+6)llfll^. 

This contradiction establishes the existence of the previously-defined 

Kg < 00 for every 6 > 0. and thus establishes that M^ -* «> for every 6 > 0. To 

M« 
see that lim^ ^ = 1, we note that when n > Kg. then M^ > n - K^. and so 

^ - ir^ ^ - —• giving—^1. 

Part (5) is proved in the same way as (4), since the projection operator 

^5 ~  ^0 ^^ dimension K^ for some non-negative integer K'    .        n 

We give several additional definitions. The operators S. S  P  V  and 
n'  n'  n' 

I^ are defined as above. We shall assume that S has K limit points for its 

spectrum, denoted G^ < 0^ < ... < Gj^. Of course. 0^ > -1 since (I+S)~^ is 

bounded. 

The restriction that the spectrum of S has a finite set of limit points 

is primarily meaningful in the case of the channel with memory. It means that 

S has no continuous spectrum (except possibly zero as a limit point of 

sequences of distinct eigenvalues), and. in particular. S has a complete set 

of eigenvectors. For the memoryless channel with an average energy constraint, 

the assumption is very minor. There, it means only that the noise covariances 

do not have an infinite set of limit points—certainly reasonable. The 

assumption will also hold for a very large class of channels with memory. 

Let 6 > 0 be such that 5 < t niin[0. + 0._,]. where 0 is defined as 
1<K    ^ ^   ^ U 

0Q = -1.   We partition  the  interval   (0,   III+SII]   into  the  intervals   (0,   1+0 +6], 

CC of D-T Chnls. - 11/10/87 - 6 
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(l+e^+6. 1+02+5]. ... (l+e._^+5, l+e.+5], ... (1+0^^+5, III+SII]. The interval 

(l+0j^+5. III+SII] is defined only when 1+0^^+5 < III+SII. If S is not bounded, then 

III+SII is not defined, and 0^^ = <». However, we will at times use III+SII, under- 

standing that this is equal to +<» if S is not bounded. The spectrum of the 

operator I+S is contained in the union of these K+1 (or K) intervals. For 

fixed 6. we now denote by M (i) the number of o.n. eigenvectors of I + S 
n n   n 

corresponding to eigenvalues which lie in the interval fl+0. -+6, 1+0 +51 
1-1      i  -■ 

/3j ^ ^2 - •■■ ^ ^n *^^^ denote the eigenvalues of S , repeated according to 

their multiplicity. For 1 < j < K. (a^*^'^, j < M^(i)) will denote the 

sequence of eigenvalues of S lying in the interval (0. ,+6, 0.+51, ordered bv 
n "• 1-1    1  -» J 

n,5,i . n,6,i    , 
o^-    S "'i+l     '   ^^    repeated according to their multiplicity. 

Let P^ ^ be the projection operator in S^  with range equal to 

7^ 

range(R^P ). (P  ) is a monotone non-decreasing sequence and P  x ^ x for 

all X in ^_; this is obvious, since we can identify rangefP ) with the 
■^ n 

subspace H = {x € ^ : x = 0 for i>n}. If x € range(P^ ). then V^V x = x; 
^^       ■^  ■»■ W,n       n n 

hence. (V^V^) converges to the identity in the strong operator topology: 

V^V^x -* X for all x in «„. 

Lemma 2-   For any 5 > 0 such that 6 < t min [0. , -0 1. 
i<K-l  ^^1   i 

K M^(i) 
(1)  lim 2 — = 1: n 

n-*» i=l 

.5r. (2)  lim M^(i) = oo for all i < K; 
n 

M^(i) 
n*^ ■' 

(3) lim —-— is independent of the value of 6. for all i < K; 
n 

  J M^(i) 
(4) lim 2   is independent of 5 for any J < K; 

n i=l 
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5  , .. t 

(5) For any 6 > 0,  Hm ^ 2   2   (a"''^'J - 9.) exists and is equal to 
n " j=l  i=l    ^       J 

zero. 

Proofs Before proving the individual results, the relation between the 

eigenvalues of I^ + S^ and the spectrum of I + S will be described. First, it 

is noted that S^ has a complete set of eigenvectors, for all n > 1. The 

assumption that S has only a finite set of limit points in its spectrum means 

that S has a complete set of eigenvectors. Suppose now that {y., j<J} is a set 
J 

of o.n. eigenvectors for I + S  with (I +S )y = a .y.. Since the operator V 
^^        n n J   J J n 

is an isometry of range(R£P ) onto IR . we have that y. = V u., where (u  i<T> 
nn jnj       IJ-J-O/ 

IS a unique o.n. set contained in range{R^P ). Thus. a.  = <(I +S )y.. y.> = 

<V^{I+S)v\^Uj. V^Uj>^ = <(I+S)Uj. Uj>. In particular. 0 <• l+/3^ < ... < l+pJJ < 

III+SII for all n > 1. . . 

To prove (1). we can assume that Q^  < oo. Then, if the equality is not 

true, there exists an infinite sequence (n, ) of integers such that 

^k'^^k ^ ^ ^ 0. where q^^ is the number of eigenvalues (counted according to 

their multiplicity) of I  + S  that either exceed 1 + e„ + 6 or else are 

less than 5. Applying part (5) of the preceding lemma, we can assume that all 

these eigenvalues exceed 1 + Gj^ + 6. By the preceding discussion, there then 

exists for each k > 1 an o.n. set {u^ u^ } with <(I+S)u^. uS > 1 + 0 +6 
1     qjj       *•  ■' 1  1        K 

for i < Qjj- Since 1 + Gj^ is the largest limit point of the spectrum of I + S, 

there must exist an integer N„ such that q, < N.. for all k > 1. This 

contradiction establishes (1). • 

(2) Suppose that there exists some integer M. such that dim span{x € K^: 

<(I +S  )x,x>    e A.}   is     < M.   for all n >  1.   where A? =  (1+9.   ,+5,   1+9 +61. 
iinni 1 11—1 i 
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6, GQ = -1. Then dim span{x C range(R2p^): <(I+S)x.x> € A.} < M. for all n > 1. 

Now range(R^p^) = range(P^ ^) defines a non-decreasing family of subspaces. 

with P^ ^x -♦ X for all x in £^,   amd the above inequality is equivalent to 

dim span{x € i^.   <(I+S)P^^^x,P^^^x> C AJ} < M. for all n > 1. As 1 + 0. is a 

limit point of the spectrum for I + S, there exists an infinite o.n. set (u^ 
•^ k' 

k > 1} with <(I+S)uJ. u^> ^ 1 + e^ as k ^ 00. Hence, if we take M. + 1 of the 

elements {u^ Uj^ ^^).  and any e > 0, then there exists N(e) such that 
i 

<(I+S)P^^^Uj. P^ n^J> e (l+e.-e. l+e.+fc) for j < M. + l and n > N{e). We can 

assume that HP^^^UjII > 0 for j < M. + 1. To prove (2), it suffices to show 

that for all sufficiently large n the elements {P„ u\ j < M.+l} must be 
W,n J   ~ 1 ^ 

linearly independent. If this is not true, then 

M. 

^^,A.^i = M'\A (-) 
for infinitely many integers n. We show that this cannot hold. 

Suppose that (^) holds for infinitely many integers n. Then, as fP  ") is 
^ W,n'^ 

a monotone increasing family of projection operators, we can see that if 

M. 
^ m m 1   O 

"^W m^"M +1 " ^ "i'^i' )"  > ° ^°^ ^11 scalar sets {al,   j < M.}. then this 
i    j=l >J "J J      1 

also holds with n in place of m. n > m. For, P„  = P„ eP„  + R„  . where 
n,n   w,n W,m   W,m 

^W.n^W,m ^^ ^^^  projection onto the orthogonal complement within range(P^ ^) 

of range(P  ). Then 
", m , 

"^W.nf^M.-Hl-.^^VJ) 
1   j=l "J -J 

'W,nJ 

Mi I ■ 
n i.,,2 
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M. M. 

1       J=l 1       J = l  -^  "J 

Mit 

Thus, if the set {P^ ^u , j < M^} is linearly dependent for infinitely 

many n, then it must be linearly dependent for every n. This gives 

M. 
1     ^^ n„   i,..2 

{a^. j<M.}  '^•n V^  j=l J '^•^ J 

for every n. This implies that for every n there exists (a),   i < M ) such that 
J      i^ 

M. 
1 

the vector u?.   - 2 a]u]   is contained in range(Pu, ). Since (?i    ) is a 
' j^ ■'■   j_]^ J J *Y,n W,n 

M. 
1 

monotone decreasing family of projections, this means that 1  fa^-a™")u^ is 
j=l  J  J  J 

contained in range{P^ ^) when n < m. If a" ?£ a!,   then as the {u^, j < M.} Is 
' J        J J 1 

an o.n. set. u.  must belong to rangeCP^ ). If u^ is in range(pi ) infinitely 

often, then necessarily n.  is in range(P  ) for every n (because (P;^ ) is a 
J It, n W,n 

monotone decreasing family of projections). This contradicts the fact that 

<(I+S)P^^^u^. P^_j^Uj> is in (l+e.-e. l+G.+e) for all n > N(e). We thus 

conclude that a    = a    for all but a finite set of integers n,m. Hence, 

^^W,n^j' ^  - ^i^  ^^^  ^^ linearly dependent for infinitely many n only if then 

there exists N such that P  u„ ^.   =    2 a.?^    u^ for some fixed set w,n M^+i  ^_^ J w,n J 

{a      j < M }, all n > N(e). But then 

M. 
1 

0 = lim IIP^ (u^ ^1-2 a.u^) 
W,n^ M.+l   .,11 n        1    j=l "^ "J 

Mj M. 

= "^M J.1 - 2 a.u^)ll^ = llu„ ^,11^ + 2 (a.)^. 
M.+l   ■ 1 J J M.+l . ,  j"^ 
1    J=l 1 j=l -^ 
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This contradiction shows that (**) above cannot hold for infinitely many 

integers n, and thus proves (2). 

(3) The fact that lim M^(i)/n is independent of the value of 6 follows 
n 

from the fact that there exists, for i < K, an integer M. depending on 5  such 

that I^ + S^ can have no more than M. eigenvalues in the interval 

(l+9l_l+5. 1+e -5], for 6 < t niin[e   - 0 ] and for all n > 1. For. if this 
i<K ^^   ^ 

were not true, then the discussion at the beginning of the proof shows that 

I + S would have a limit point in the interval fl+G +6, 1+9  -61 
*•  1      i+1 '' 

contradicting the definitions of 9. and 9  . 
1     i+1 

(4) follows in the same way as (3). 

To prove (5), one simply notes that for any e < 5 and i < K there can 

exist only a finite number of o.n. elements (u.) in 5_ satisfying 

1 + 9   + 6 < <(I+S)u..u.> < 1 +9. - £. 
11        1 D 

The proof of the coding theorem will use Feinstein's Fundamental Lemma, 

as modified and extended by Thomasian (see, e.g.. [5. p. 232]) and Kadota [6]. 

It is stated below. 

LemmaJ: Let (n^.^^.fi^) and (fi^.jSg.Mj^) be two probability spaces, with f: 

n^xQ^ ^ ^2 ^y PjXP2/P2~'"®^^^''^^^® function. Define jx^ on (fi xO, p x/3 ) by 

MXY(D) = Mx%{(x.y): (x.f(x.y)) € D}. 

and let ]i^  be the projection of ii^  onto P^ (note that jx^(C) = )Lt^0)ix^{(k,y) : 

f(x.y) e D}). Let f^ be the section of f at x: f^(y) = f(x.y). any fixed x in 

Qj, all y in n^. Suppose that U^^^^    and \i^  are mutually absolutely continuous 

a.e. dM^{x), and that the function g: (x.y) -» [dfi^of'Vdfi^JCy) is /3 x/3 

measurable. For any real number a let A = {(x.y) in Q xQ  :   log g(x.y) > a}. 
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Then for each positive integer k and set F in /3 there exists a code (k.F.e) 

such that e < ke""^ + f^CA^) + M^(F^). 

The following theorem gives the exact coding capacity for the discrete- 

time Gaussian channel. Recall that we are assuming WLOG that R^ is strictly 

positive on S^. 

Theorem: Suppose that R^ =  Rj(I+S)Rj. where (I+S)  exists and is bounded, and 

that S has pure point spectrum with K limit points 0, < 0„ < ... < 9 . Then. 
L 2i K ' 

if Hgj^(N)   < CO. 

     J n C^(P)   < t lim    2 -r" log 
n    i=l 

•P<1\(1-\)1 

k2J^inr-)(l^.) 

M^(i) 
where nr^ =    "^      with 6 any fixed number  in (0.  ^ niin[0      -0.]),  and J<K is 

i<K ^  *■    ^ 

the largest integer such that P + lim 2 nr?{0.-0 ) > 0. If N is Gaussian then 
n i<J ^  ^ *J 

n rP<rk(i^^k)i C^(P) = i lim 2 T" log —.  
n i=l ^    L(2^ ,T"){1+0.) 

Proof: The proof is rather lengthy, but follows a standard path. First, we use 

Feinstein's Lemma to prove that C^(P) as given is a lower bound when N is 

Gaussian. Fano's inequality is then applied to show that it is an upper bound. 

The results of [1] and [8] are essential for these proofs. Notice that we can 

assume, by the Proposition, that 0 < <». 

We will use Lemma 3 to prove the lower bound when N is Gaussian. That 

lemma first requires one to define a Gaussian probability measure u^  and 

thereby p^  and fi^®M^, for n > 1. such that f^[F^] -^ 0 and |LUL[A'^] -» 0. where 

d ^ 
F    =  {x € K":   IIXIIJ       < nP}.   A^ =  {(x.y)   in IR^'XIR":   log       ^  (x.y)   > a }. 
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Let Q € (O.P). Fix 6 > 0 such that 6 < t min[e.-e._ ] (with 
i<K ^ ^ ^ 

J(Q) 
e„ = -1). Let J(Q) be the largest integer such that Q + 11m 2 T^fG -0 , -5) 

n j=l  J  J J(Q)  ^ 
J(Q) „ 

is strictly positive. For n such that Q + 2 T .{6 .-0,, ,-6) < 0, set Q" = 0, 
■j_i  J  J Jv^J k 

k < K. Otherwise, set 

Q.2    nr^(e.-e^-6) 
n     1=1 J  J "■ 

= 0 k > J(Q) 

Let /i^ be the zero-mean Gaussian measure on K^ with covariance operator 

(matrix) R^ given by ^ 

0^ _  -^  r>n ^  rr>2  . n.l. 

where {uV'^ 1 < j < M^(i). 1 < i < K} are o.n. eigenvectors of I + S 
•^ " n   n 

with <(I^-HSJuV-\ UV'S^ € (l+e._^-H6. l+e.-HS]. U^: K^ .K" is the unitary 

matrix satisfying R^_^ = Rj^CV\)^U^- The inner sum in the definition of R^ 
A 

is only defined for those i such that M^(i) > 0. Note that u? = LL o fR2  A"! 

where u^  is the zero-mean Gaussian measure on K" with covariance operator 

.  J(Q) "n^^'^   .    . 
R?= 2 Q" 2 u^-J^u'^-J. 

n* 

j=l ^-^ 1=1 

Let F^ = {x € K": IIXII^^^ < nP}. We will show that MJCF^] ^ 0 as n 
„n 2 

MJCF^] = M5{X € iR^: 11x11^^^ > nP} 

= M?{x € IR": IIRI^^XIIJ^^ > nP} 
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.J.      X 
= M?{x € IR^   IlIV^^Rg^^xll^ > nP} 

n, r,n. = |iil'{x € K":   11(1 +S  )2u\||^  > nP} 
1 n    n'     n    n ' 

= fip{x € IR   : ^T,n „2 2    11(1 +S  )2U P\'xir > nP} 
j_2 n    n-*     n j    n ^ 

M^(j) 

where p"x =      2    <u?* ^x>u?-"^.  Thus. 
J .^j       1 1 

J(Q) 
M^(J) 

M5[F^]  < f4{x e K^":     2    (l+e.+6)    2    <u'?'J.x>2 > nP}. 
j=l ^ i=l       ^ 

For each fixed j < J(Q) such that Q" > 0, the set of random variabl es 

n.J 
{^^i' ••>•■ i ^ \^"^^^ ^^ ^ ^®^ °^ zero-mean independent Gaussian random 

variables, each having variance Q", with respect to p^.   Moreover, <p!}'^,'>  is 

independent of <p^-^   .-> for j fJ j". all i < M^(j). all k < M^(j'). Let 

J(Q) M^(j) 
n.j  .2 

Z^=    1    (l+e,+6) 2 <fi"'-J..>^. and set T. = 1 + 0. + 5, y""'^  = <u!^-^   .y 
j=l    "^  i=l  ^ J       J       i     ^i  ' 

J(Q) 

Then 

E Z = 2 T.M^(J)Q'?. 
n n   . ,  1 n^ ' 1 

fJ^    J=l  -^     "^ 

Also 

2  J(Q) 
Z = 2 n T.T . 

j=l i<J(Q) ' ^ 
2 V 

k=l 

n.j 
'M^i) n^ ' 

2 v' n.i +  2  T 2 V 
k=l 

n.j 

Computing E Z . one obtains 
n n 

Uj 
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,^f • Mi5, ., _n^n 2 J(Q) 

J(Q) p 
3(Q5)V(J) + M^(j)[M^(j)-l](Q^)2 

J(Q) 

j=l "^ ^        ^  i<J(Q) ^ ""   ^ 

J(Q) 5 
+  2  T^ 

L<J(Q) 

2M^(J)(Qj)^ + [M^(J)]^(Qj)^ 

rJ(Q) 2   J(Q) 

The variance of Z^ with respect to fi^is thus equal to 

2 2 T^^(J}(QV. 
j=l 

J n' 

Applying Chebyshev's inequality, we obtain 

]xt{Z^ > nP} = ]xt{Z -E    Z    > nP-E    Z } In ""^ n      n n n n-* 

Now, 

^ ^•^2^^2„f(J)(Q-)2. 
(nP-E ^ZJ- j=l 

r '"I' 

J  n^"'^   j- {»*) 

J{Q)  5 
E    Z    =    2    M  (j) 

Mj J=l 
n^ 

J(Q) 
Hr Q +    2    -r.Te.-G.-S] 

i=l 
J{Q) 

2    -Y 
k=l 

n 

J(Q) n. 
= nQ - n 2    T 6  > n(Q-5). (HX) 
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Similarly, the variance of Z is 
n 

■J^Q) 2,5    n2   •J(Q) 5 

j=l  -^ "    ^ 3=1 

Q + 2 -r [e.-e.-6] 
i=l ^^ ^ J ' 
J(Q) 
2 -r: 

k=l 

n 

J(Q) „ 
= 2n 2 T 

j=l ^ 

J(Q) 
Q + 2 T^ce.-e.-s] 

i=i ^^ 1 J ^ 

J(Q) 
2 -r: 

k=l 

n 

2n(Qfej^) 

^ ^k k=l ^. 

(xx^) 

J(Q) n . 
To see that 2 T^  is bounded away from zero for all sufficiently large 

n, suppose not. Then .       ; */ 

lim 
n 

■   «^(Q) n 
= Q 

and so . I 

lim 
n 

J(Q)+1 n. 
■^^ ifi •'i(«i-«j(Q).r«) 

= lim 
n 

Q + T 
J{Q)+1^®J(Q)+1 ®J(Q)+1 ^. 

n 
= Q - lim ^J(Q)^i6. 

n J(Q)+1 n 
Now, Um '^jAQA+i does not depend on 5; thus, if iim 2  T > 0 while 

5^ ,    - n i=l 

6 > Q - 5 for all iim 2 TT = 0, then lim T     > 0. and so Q - T 
n i=l  ' n  ^f^J""^ 

n 

sufficiently large n. Taking 5 < Q, lim 
n 

J(Q)+i 

J(Q)+i n. 
«* .f, ^i<^-«J(Q).l-^' > 0. This 

inequality contradicts the definition of J{Q) if iim -r^rfQ^.       > 0, showing that 
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J(Q) ^ 
2 -r  is bounded away from zero for all sufficiently large n. Noting that 
j=l -^ 

^    n J(Q) n 
iim 2 -r = 1, we see that lim 2 -r. > 0 is required by the definition of 
n j=l -^ n j=l ^ 

J(Q)- 

Using (»e*) and (»««*) in (x), one obtains 

n 
n 

2(Q+ej^)^ 

n(P+6-Q)2 ^(^Kl 

which converges to zero as n -♦ «>. for all Q < P. any 6 in (0, t min[0.-0._ ]) 
. -•    :\ i<K ^ ^~^ 

We now proceed to verifying the next step in applying Feinstein's Lemma: 

For u^  as defined above, and the resulting p!^.   |LJL[A^] ^ 0, with 

n ai 
r,n ~n dp^ 

A^ = {(x.y) in IR xK": log —^  (x.y) > a }. 
dfi^gfi^        ^ 

J(Q)"n(J'   " 
a = I 2   2  log[l + Q^] - nnr. where T > 0 is fixed. 

j=l i=l ^ 

Applying the proof of Proposition 2 of [8], we have that 

J(Q)^n(J) 
A^ = {(x.y): t 2   2  {[a^'^f - [b^^-^f) < -n-r} 

where for j < J(Q) such that Q^ > 0. {a}'^,  bJJ"'': i.k < M^(j)} is a set of 

i.i.d. Gaussian random variables with respect to fi!L, each having zero mean 

and variance (Q^/[l+Q^])^. Moreover, the set of random variables (a^"^, bP"^: 
J    J 1    k 

i.k < \(J)} is independent (w.r.t. fi^-' of the random variables 

^^i' '   \'      • i'k < M^(j')} for j ji y .   Chebyshev's inequality then gives 
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n  r »c- 1 

j=l    i=l ^ ' ■ 

,    J(Q)<(^) 
2      E 2 2.,     .   , n n T    j=l    1=1      ju^ 

(a^'J)^-2(a^'V'J)2+(b^'jy] 

,5 
J(Q) "n^J^req" 

2 2 
nV j=l     i=l 

r6Q.      2Q'! 
J—- -  A. 

J J 

1       -J^Q)   5 

n -r    j=l 

r4Q 
n 

J. J(Q) 

1+Q"-'      n-Y^ j=l    J 
J 

<—-0. 

Now.   by Feinstein's Lemma,   there exists a code  (k   ,F   .&   )  with k    =  Te^l 
n n n'      n  "-  -^ 

-a 

^^ ^n - \®   "^ ^(^n^ "^ ^(^n^- ^^ ^^"^ remains only to determine the set 

~"n ~« 
of R such that k e   -^ 0 as n -» «>. By definition of a . k e " < 

" n  n    - 

nR+nnr-t ^-Jf^^M^Cj) log[l+Q^]    J(Q) M^(J) 
e '' J . Choosing R < lim t 2   "^ 

admissible, since then one can take -r > 0 such that 

J{Q) 5 
nR + rnr - t 2 M^(j) log[l+Q ] < 0 for an infinite set of integers n > 1, 

J=l -^ 

This gives R admissible so long as 

^  logCl+Q'J]. R is 

and so 

— J(Q) n 
R < lim t 2 -r. log 

n   j=l J 

J(Q) 

Q + 2 7^(1+0.) 
i=l ^   ^ 

£':! 1+0 .+6 
J 

C^(P) > lim i 2 y^  log 
n   j=l 

,    J(Q) 
Q + 2    T 

i=l 
\'(i^, .) 

^k=l     ^-J 
1+e. 

L    jJ • 

(»*) 
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Let J < K be the largest integer such that P + lim 2 ^"(9.-0) > 0. Then, for 
n j=l -^ J ^ 

sufficiently small 6 > 0, there exists Q < P such that 

n. 
Q + 2 T. (8 .-6,-5) > 0 

for infinitely many values of n; for such 5  and Q, we thus have J(Q) = J. If 

  J ^ 
P + lim 2 nr (0 -0 ) = 0, then for sufficiently small 5 and for Q sufficiently 

n j=l J  J ^ 

near P. J{Q) = J-1. 

n, 
Thus, if P + lim 2 T (0.-0 ) > 0. then (**) gives 

n j=l ^     J ^ 

C^(P) > lim 2 T"} log 
n .1=1 ^ 

n, 
P+ 2 -rY(l+0.) 

i=l ^   ^ 

n 1  -r 
•k=l ^^ 

1+0 
L  JJ 

J n. Suppose that P + lim 2 -Y.(0.-0 ) = 0. Then 
n j=l J  ^ ^ 

n lim 2 -Y . log 
n j=l ^ 

n. P+ 2 ^.'(1+0.) 
i=l ^   ^ J-1 n < lim 2 T. log 

i\i^^l]H\   --^   [\i.i] 

n, P+ 2 -rV(l+0.) 
i=l ^   ^ 

1+0, 
jJ 

since for any e > 0, 

J n. 
P + 2 y.n+6.)   < 

i=l ^   ' 
2 T 

^k=l 

n 
(l+0j) + £ 

for all but a finite number of values of n. We will now show that for every 

e > 0, all but finitely meuiy n, 
■   :'.f. 
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J-1 ^ 
2 T. log 

■p+    2 -r 
i=l 

"(1^, >)■ 

4c=l     -" /^i • 

J-1 n 
< 2 T . log 

J-1 n. 
P + 2 T.fl+e.+e) 

i=l     ^ 

For a fixed value of n, this will obviously hold if T^ = 0. If -r^ > 0, then 
J        J 

the preceding inequality holds if 

0 > 2 T^ 

r   J   r. irJ-1 1 
P + 2 ^^(1+G )  2 -r" 

L   i=l ^   ^ J 4c=l ^^ 

J-1 n. P + 2 -r.il+e.+e) 
1   1  ^ 

i=l     ^ 
2 -Y: 

^k=l 

n 

p + 2 T.ci+e.+fc) 
L      i=i ^      ^   'J 

r J 
2 -r. 

■k=l 

n 

which is equivalent to 

0 > (1+e ) 2 -r^ - P - 2 -r^Cl+e.) - e 2 -r^ 2 -rfz-r^ 
^ k=l ^ i=l '   ^    1=1 ^ k=l ^^ J 

or 

0 > (1+e ) 2 -rj - 
^ k=l ^ 

J-1 
P + 2 

i=l 

n 
1+e. + 

1 

,J  n 
e2j^^.Tr. 

n 

J-1 
Since P + lim 2 nr (e -e,) = 0, the preceding inequality must hold for all but 

n j=l J  •' ^ 

a finite set of n, for any e > 0. Thus, when P + lim 2 ^^(e.-ej = 0, 

n J=l J J -^ 

J-1 
C^(P) > lim 1 y^.   log 

n J=l ^ 

J-1 
P+      2   T 

1=1 
^1^, 

.)■ 

fJ-1     T,1 •^    n 

4C=:1        ■' 
1+0. 

L    J. ■ 

n 
> lim 2 T. log 

n j=l ^ 

J 
P+    2 -r 

i=l 
^He,)' 

L    2 -r 
'■k=l  ^J )^i] ■ 

This completes the proof that when p-,  is Gaussian 
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CJyCP)   >   lim    2 -r"  log 
n    j=l 

P+    2 ^"(1+0.) 
i=l   ^ ^ 

2-rjlfl+e." 

where J < K is the largest integer such that 

  J n. P + lim 2 T.^e.-G ) > 0 
n j=l j  j J-^ 

n 
for {T  j<K} defined in terms of any fixed 6 > 0 such that 

6 < t min (0.-9. J. 
i<K  ^  ^-1 '       ■-' 

In order to prove the upper bound for cJJ(P), Fano's inequality is applied 

in a standard way (see, e.g.. pp. 166-167 of [8]). Thus, if we have a code 

(k^.n.e). with k^ = [e"^]. then 

£ > 1 - 
cJ(nP) + H^j^(N) + log 2 

log k 
n 

This gives C^(P) < lim ^ cJ{nP). where dJ(nP) is the capacity of the discrete- 
n 

time Gaussian channel of dimension n and with the constraint E 11x11^  < nP 
n  W.n - 

We now evaluate lim - C:^(nP). From Theorem 1 of [1]. 
n 

N(n) rnP + ^S'}\l+p^.). 
C^(nP)  = t    2       log   I J=l ^.1^ 

i=l ,n- ■■    N{n)[l+pV] 

N(n) 
where N(n) < n is the largest integer such that nP + 2 13? > Nfnle", , We 

can rewrite this as 
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C^(nP) = 
K{n) "ntJ)" 

2   ^ 

j=l 
2 
i=l 

log 

,  K(n) <(k)' 
P + -   2          2 

" k=l      «=1 
UaJ-^'k] 

N(n) 
n 1+a. 

1 
>. j" 

where 0 < 5 < f min[e^^^-e ], K(n) is the largest integer < K such that 
i<J 

,5,..»« 
'^N(n) ^ ^-^"^KCn)-!*^' ■^'^^Kfn)'^^^' ^^^  \^*^  ^^ ^^® number of elements 

{aj' •\ 5 < \{i) } in the sequence (Pj • • • • .PjJ/n)^ *^^ ^^^^ ^"^° ^^® 

interval (e._^+5. e.+6] (0^ = -1). The difference, if any. between {M^{i)**, 

i<K} and {M^(i). i<K} as previously defined can arise only for i > K(n). 

Considering lim -C^(nP). it is clear that we can replace K(n). in the above 
n 

expression for C^(nP), by J: the largest integer i < K such that 

%(n) ^ (^i-i"*"^' ^i"*"^] for infinitely many n. J can also be characterized as 

^j=l"'i=l  i 

i < M (J) } for infinitely-many values of n. Thus, 

the largest integer < K such that nP + 2"^ ,2."^,  aV*""^ > sup{a ,n.6, j, 
i 

n' 

00 J ^tJ)" 
C^(P) < t lim i- 2 

n 
2  log 

j=l i=l 

1 
T M^{k)** J  n*- ' 

P + - 2   2 1+a n.6,k 

N(n) 
n 1 

Now, for any fixed n. 

2^2  log 
j=l   i=l 

P + -   2        2 
"k=l    «=1 

'l+aj'^'^' 

N(n) 'l+a-^-^-j" 
1 n „    ': 

(»*) 

is independent of 5. since the sequence (a^' '^: i < M (j)**. j < J) is 

identical to the sequence (/3., i < N(n)) for every n. 
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,6,T^^ Note that if there exists K, < «> such that M (J) < K^ for all but a 
J n^ -^  ~ J 

finite set of integers n, then 

J-1 <(J^ 00 ,         1     "" 
C^(P)  < t lim ^    2        2    log 

n        j=l    i=l 

1 J-1 "n(k) 
P + -    2 2 

^k=l     «=1 
1+a 

.n.5,k 

NM[i,„n.6.jj 

Eind |NInI_ 
' n 

J-1 M"(j) n' 

j=l 
n -» 0 as n -♦ 00. Thus, we can assume without loss of 

generality that M f J) -♦ oo as n -* <». 
n ' 

Let k < J and take any e > 0. Then there exists N(e) such that at most 

N(e) of the elements (a"' " ). « < Mf(k)**. lie outside the interval fO,-e 
« n V j^ 

0j^+e), with N(e) independent of the value of j. Hence 

J »n(k)' 
\   2   2  [a^'^-^-e^] 

k=l 5=1   ^     ^ <lJj«nW''-'^j^[ert-l]-«-- 

2 M (k) /n < 1. we thus have that 
k=l ^ 

lim 
n-*o 

- 2 
^k=l 5=1 

6 „ ,»« 
n 
2 

5,.,i« 

-2   2    a^-"^'^ - 2 -2  - 2 
i=l 

e. 
n   1 (XH) 

exists and equals zero. 

Using this fact, the preceding upper bound on C^(P) can be written as 

J Mf{j)^ 
C^(P) < i lim 2 -2  log 

n j=l  ^ 

P + 2 
i=l 

J Mf(i)** 
n 

-(1+9.) 

2  ^ 
'-k=l n 1+e. 

jj 

A routine calculation shows that for 0 < a . i < T 
-  i   ~ 
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J 
2 a    log 

j=l ^ 

? +    1 a.n+Q.) 
i=l     ^ 

J  ■ 
1+e ,] 

5,..x IS a monotone increasing function of a,. Thus, we can replace M (J) with 

n,6 n,5 
n 

\U).   define -r .'     =  M^(j)/n, and recall (Lemma 2) that lim -r^'^ =  lim 
n  ''     n 

is independent of the value of 6, for 5  in the interval (0,[t min (0.  -0.)]). 
i<K  ^"^^ ^ 

Thus, we have that 

C^(P) < t lim 2 T"? 
n j=l 

p 
J 

+      2   T 
i=l 

^ue, 
>) 

hjj 
The final step is to show that J, as defined in this part of the proof, 

is the largest integer < K such that 

lim 
n 

n. 
p + 2 T.ce.-e.) 

j<J j^ J J. 
> 0. 

n' 

We have defined J to be the largest integer < K such that 

J "n(^)' 
(a) nP + 2  2 a"}'^'^   >  N(n) sup{aj-^"^: i < M^CJ)*"} for infinitely many 

j=l i=l 

n, and 

(b) M^CJ)"* ^ «>. 

Now lim sup{a^''^"^: i < M^CJ)"*} > 0  and 
n n       J 

'n 2j=l^i=l «i    - n ^j=l\(j) e. I ^ 0 as n - «>. Thus. 
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lim 
n 

P + 2^ ,-T^(e.-e,) > 0, so that J < J-, where J. is the largest integer 

< K such that lim 
n 

> 0. 

:>>,'.. 
We will now show that if J < J  then 

n 
lim 2 T. log 
n 1=1 

n. 
p + 2 ^^'(1+e ) 

k=l ^   ^ 

2 n^"^ (1+e ) 

n < lim 2 T. log 
n 1=1 

p + 2^;;(i+0) 
k=i ^    ^ 

.[jfl^jjf'^i' 
()ee*) 

This will be shown by constrained optimization. Define the function F(a), 

a € K*^, by 

F(a) = 2 a    log 
i=l 

■p 
J 

+    2 a 
j=l j(^^^-)' 

• 
r -^     1 [i-e.] J 

We will maximize this function, subject to the following constraints: 

(A) 0 < a < T^.    i < J. 

(B) 2:Ja. < 1. 
1 1 ~ 

The inequality (^«««) above will be proved if one can show that F has a 

global maximum (subject to the constraints (A) and (B)) given by a.   = -r^, 

i < J. 
I 

First, we note that the admissible values of a constitute a closed convex 

set in K : if a and £ are both admissible, and 0 < A < 1, then clearly 

Aa. + (l-A)p. € [O.TT^] and 2^[Aa. +  (l-A)p.] € [0.1] for i < J. Moreover, this 

convex admissible region is closed. Thus, any local maximum of F will be a 

global maximum if F is concave over the set of admissible a  [9]. We also note 

that the admissible region is bounded from below and that the global maximum 

of F over this region must be finite. Thus if F is concave, then F takes on 
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its maximum at a boundary: i.e., for i < J. either a. = 0 or a = T'^ Thus  to 
1        i   i     ' 

prove (>«««), we need only show that F is concave, and that the constrained 

optimization problem has a local maximum for F(a) given by a. = -r?, i < J. 

To show that F is concave, we will show that its Hessian matrix, whose ij 

element is given by d'^/(da^da ),   is negative-definite. The calculations give 

g^p 

da.da.      da. 
1     J J 

• J 
2 a, 

■e=i ^ 

1 + e. 

1 + e. 1 

J J 

k=l ^       ^       k=l ^ 
J 

■P +    2 a, (l+G ) 
k=l ^        ^ 

H= i\ i+e. 

1 

,p + 2 a, (i+e ) 
k=l ^      ^ 

J 
2 a. J 

k=l ^ 

J 
2 a, 

-(i+0.)(i+e.) 

J i2 
p + 2 Oj^Ci+ej^) 

k=l 

r J      ^2 
2 a^ 

Wl  ^ 

1 + e. 
 i. 

LP + 2 OL (i+e ) 
k=l ^       ^ k=l '^J 

Setting C = P + 2^^10^(1+01^). we have 

a^/da^da.  =  N(i,j)/D 

where J) = ^(l^^^a^) . 

and    N(i,j) = C(2;[^jQ^)(l+e.+l+ej) - C^ - (2jJ^iak)^(l+e.)(l+ej). To show 

that F is concave, it remains to show that the matrix with elements N(i,j) is 

negative definite. Let A be the JxJ matrix whose ij element is equal to 

(\_lQ^){l+0j). for J < J, each i < J. A has constant rows, so A has constant 

columns, and if x € R*^. 2^ .x^ = 11x11^ = <x.x>,, then 2"? . ,x.N(i.j)x = 
1=1 1     J       J       i.j=l 1 *■*'-' J 

-ll(CIj-A )xllj. since A+A has (2^aj^)( 1+0^+1+0.) as ij element. The matrix N is 

thus negative definite. Since no restriction has been placed upon a  in this 

derivation, it follows that N is negative definite over K , and in particular 
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over the closed convex set {a:   0 < a    < -r^,   2._ a. < 1}. Thus, we have that 
/v» 11      1 — X  1 

any local maximum for F also defines a global maximum. 

It now remains only to show that a local maximum for F is obtained f or 

cc.   =nr..    i   <   J. 

The Kuhn-Tucker objective  functional  for  this problem is 

f(a)  = F(a) +2/3 
i=l   ^ 

a.-T.     -    2 \.a., 
111       .1X1 

•'       1=1 

where the generalized Lagrange multipliers j3^ p      A^...,A and the vector a 

provide a local maximum when the following conditions are satisfied: 

3a. f(a) = 0. i < J: 
a>* 

and 

»*   n a. - -T 
1 

V < 0. -a"* < 0. /3**(a%") 
1       1      1^ 1  I'' 

n a 
=  0, X^a^ = 0.  each for i < J. 

j=i'--' J 
< 0. 

Differentiating, 

di 
da. 

1 
= log 

P + 2 a.(l+e.) 
■1=1 ' ' 

^k=l ■ 
1+e. 

^k=l 
"k [i-.e._ 

f J 

- p - 2 a.(l+e.) 
■1=1 ^     ^ 

•k=l "k 

J 
P + 2 

k !^"k(i^\)] 
+ p. - A.. 1 

Setting A. = 0 and a.   = -r^  for i < J, and 

-Pi = log 

n. P + 2 -Y.(l+0.) 
■M '        ' 

2 T 
^k=l 

n 
1+e. 

1 

^k=i ^J ^ ^J 
n. - P - 2 -r.(l+0.) 

■1=1 ' ' 

Ifr^H^ \i^k(i^\^ 
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we see that -p. > 0 for i > 1. This shows that F(J.-Y". . . . .T") is a non- 

decreasing function of J. Hence, (Jee*) above is proved, and this completes the 

proof of the theorem. 

U 

For the time-discrete memoryless Gaussian channel with R^ = I, the 

Theorem gives new results for the non-stationary channel. In this case, 

Rj^ = I + S. and the limit points {1+0^ A+Q^}  are the limit points of the 

eigenvalues of R^.  The eigenvalues of R^^ ^ are also eigenvalues of TL.,   and the 

above development can be simplified. However, the results given in the 

Proposition and the Theorem for the capacity CL(P) of course remain true. In 

2       2 
the case of Rj^ = a I. then a    is the only limit point of I + S, and so one 

obtains the well-known result that Cl!(P) = t log .   From the 

Proposition, this is also the value of cJJ(P) if R^ = I and R^ = CT^I + M, where 

M is any matrix (not necessarily diagonal) operator in i    such that M is 

compact. This follows from the fact that compact operators in a Hilbert space 

are exactly those operators that have zero as the only limit point of their 

spectrum. Thus, if the noise is of the form N = N^ + Ng. N stationary and 

uncorrelated with variance a  , and N- independent of N. with E 1  [N„(k)]^ < <», 

k>l ^ 

a ■ 
Of course, we are assuming as then the coding capacity is again 2 log 

always that all processes have zero mean. 

A principal application of these results is to the arbitrarily-varying 

Gaussian channel. The memoryless GAVC has been analyzed by Hughes and Narayan 

[10]. who obtained the X-capacity using random coding. Using the results given 

here, it has been possible to obtain the actual (deterministic) coding 

capacity of the GAVC [11]. 
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Example 

The Proposition and the Theorem will be illustrated by an example for the 

memoryless nonstationary Gaussian channel with constraint covariance R^ = I. 

Let Rj^ be the diagonal matrix with non-zero elements given by 

\ii,i)  = 1 + i 
.-1 

= 4 + i -1 

= 2 + i -1 

= 5 + i -1 

= 10 + i 
-1 

i ^  integer multiple of 7 or 20 or SSK" 

k an integer > 1 

i = 7k, k an integer < 100 

i = 7k, k an integer > 100, 
k ^  integer multiple of 20 

i = 20k, k an integer > 1 

2  2 
i = 33k , k ?J integer multiple 

of 7 or 20. 

This is the covariance of an uncorrelated noise source containing 

periodicities. 

In this case, R^^ = I + S, so that S has limit points 9. =0, 9„ = 1, 

^3 ~ ^'   ^^*^  ^4 = ^- ^^  ^^"^ ^^® t^t the bounds given by the Proposition are 

t log -if < CJJ(P) < t log[l + P] 

To find the exact capacity, we have that -^1) -* .81 ^2) ^ 14 
n -^        n '   '  ' 

•^3) -» .05. Applying the Theorem, for 0 < P < .81. Cl^(P) = .405 log 

For .81 < P < (.81)(4) + (.14)(3) = 3.66, we have 

P + .81 
.81 

C^{P) = .405 log 

If P > 3.66. then 

cJJ(P) = .405 log 

P + .81 + .28 
.95 

P + 1.09 + .2 

+ .07 log 

.07 log 

P + 1.09 
U.95){2)J- 

P + 1.29 
+ .025 log P + 1.29 
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It may be noted that the value Rj^(i.i) = 4 + i ^ which occurs only a finite 

number of times, plays no part in coding capacity. Neither does the limit 

M ■      ■' 

point e^ = 9, which has -^4) ^ 0 as n ^ <». However, the bounds given by the 

Proposition do not take into account the "relative frequencies" lim M fiVn 
n^ ■*  ' 

-...:•',■:.- ■■ '     . n 

SO that those bounds can be quite poor. In the above example, this causes the 

lower bound given by the Proposition, which uses 9. = 9. to be poor. 
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